
NASA-CR-193120

UNCERTAINTY REASONING

IN EXPERT SYSTEMS

Brief

Final Technical Report

Project

Type of report:

Summary of the

Principal Investigator:
Vladik Kreinovich

Period Covered:

9/1/1990- 3/31/1.993

Grantee Institution:

The University of Texas at E1 Paso

500 University Avenue

E1 Paso, TX 79968

Grant Number:

NASA Grant No. 9-482

0o

01 Ilm
IN _ ¢N

r,m 1.1
0, C .-4
Z _ O

,#
,O

,--4

e- i
,",' f't

)-U.O
1- _'O,

._cu

t.# _"1 1_o ....
Z

o_

Ox _. X
NUJO_

0", ,-_ Q:"

_Z m_

I z,-,-_
_c]c



UNCERTAINTY REASONING IN EXPERT SYSTEMS

Final Report

ABSTRACT

Intelligent control is a very successful way to transform the expert's knowledge of the

type "if the velocity is big and the distance from the object is small, hit the brakes and

decelerate as fast as possible" into an actual control. To apply this transformation, one

must choose an appropriate methods for reasoning with uncertainty, i.e., one must:

1) choose the representation for words like "small", "big";

2) choose operations corresponding to "and" and "or";

3) choose a method that transforms the resulting uncertain control recommendations

into a precise control strategy.

The wrong choice can drastically affect the quality of the resulting control, so the

problem of choosing the right procedure is very important. From a mathematical viewpoint

these choice problems correspond to non-linear optimization and are therefore extremely

difficult.

that

I)

2)

3)

In this project, we develop a new mathematical formalism (based on group theory)

allows us to solve the problem of optimal choice and thus:

explain why the existing choices are really the best (in some situations);

explain a rather mysterious fact that fuzzy control (i.e., control based on the experts'

knowledge) is often better than the control by these same experts;

give choice recommendations for the cases when traditional choices do not work.

Perspectives of space applications will be also discussed.

Keywords. Uncertainty, fuzzy control, optimization, stability, smoothness, space

applications.
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1. FORMULATION OF THE PROBLEM

Uncertainty reasoning is vitally important for space exploration. The high
cost and importance of spacemissions lead to the necessityfor automated systems that
help human operators in unexpectedsituations.

In addition, the distancebetweenthe Earth missioncontrol centersand the spacecraft
demands that some intelligent software also be present on board the mission in order to
make quick decisionsin emergencysituations.

One of the main problems in solving suchcontrol problems (and therefore in creating
the corresponding software) is that wehave to devisesolutionson the basisof an uncertain

knowledge of the situation. Thus it is necessary to have methods which allow representa-

tion of this uncertain knowledge and which allow automated conclusions based upon such

uncertain knowledge.

Two main types of uncertain reasoning. Several techniques have been developed

for expressing uncertainty in intelligent systems (see, e.g., a survey [$88]). In the majority

of these techniques, uncertainty of an expert statement A is represented by a number from

0 to 1:1 means that we are absolutely sure that this statement is true; 0 means that we

are absolutely sure that A is false, and numbers from 0 to 1 represent intermediate degrees

of belief. These methods can be divided into two big groups:

• methods in which these numbers are interpreted and processed as probabilities (e.g.,

probabilistic logic, Dempster-Shafer formalism), and

• methods that use non-probabilistic processing techniques (certainty values, fuzzy tech-

niques).

For both types of methods, uncertainty of expert statements leads to uncertainty in
the final decisions.

Probabilistic methods. If we use probabilistic methods to process initial uncertain-

ties, then (in the majority of cases) the formulas for the resulting uncertainties are known

from probability theory. The main problem with these methods is that often the existing

algorithms are too slow, and therefore, faster algorithms are required if we want to apply

these methods to real-time control problems.

Non-probabilistic techniques. For non-probabilistic techniques, there is another

important problem: since we are not using probabilistic formulas, what formulas to use._

In particular, we must make the following choices:

1) First, we must choose a method to represent the initial expert statements. For each

term like "small", "medium", etc, that an expert uses to express his knowledge, and

for every possible value x of the corresponding variable, we must express his degree

of belief that this x is small by a number #(x) from an interval [0,1].

2) Second, we must choose a method to combine the resulting degrees of belief that

corresponds to "and" and "or", e.g., what is our degree of belief that x is "small" and

velocity :_ is "medium"?



Using these two stages,we are able, for eachpossiblevalue u of control, to compute

the resulting degree of belief #c(u) that u is appropriate for this control situation.

3) Third, we must transform this uncertain knowledge about u into a single value _; this

procedure is called de.fuzzification.

Methods for using uncertain knowledge in control are highly successful.

Practically all of the proposed methods of intelligent control have been experimentally

tested and proved to be appropriate for some real-life situations (see, e.g., surveys [$85],

[L90], [B91], [K92]). Experiments performed at Johnson Space Center on the Shuttle and

rover simulators, showed that these methods really lead to high quality control of space

missions and planet rovers [L88], [L89], [LJ90].

The choice of uncertainty representation is vitally important for an expert

system. This importance is demonstrated by the history of the first efficient expert system

- MYCIN [$76]. The operations for combining degrees of belief that axe implemented in

this system axe very complicated. The reason is that while creating MYCIN the authors

tried to choose an uncertainty representation that would make the percentage of correct

diagnoses higher. They experimented with several formulas, spent a lot of time and money

and came to the ultimate formulas that are now implemented. This stage of creating the

expert system turned out to be time-consuming but necessary, because all other choices

essentially decreased the efficiency of this system - and sometimes even made it useless.

Unfortunately the result of this experiment turned out to be essentially dependent

on the concrete domain: the same formulas that are extremely efficient in MYCIN fail

in application to other domains. So the problem of choosing the appropriate uncertainty

representation technique is really vitally important, because the wrong choice can lead

to complete failure. Further, the proper choice can lead to an essential increase in the

efficiency of the system - an increase that can otherwise be obtained only by additional

expenditures on hardware.

Trial-and-error choice is impossible for a space mission. Usually the choice

of an appropriate technique is made on a trial-and-error basis, but this is impossible for a

billion-dollar project. So, we need theoretical methods for this choice.

References

B91 H. R. Berenji. Fuzzy logic controllers. In: An Introduction to Fuzzy Logic Applications

in Intelligent Systems (R. R. Yager, L. A. Zadeh. eds.), Kluwer Academic Publ., 1991.

K92 B. Kosko. Neural networks and fuzzy systems, Prentice-Hall, Englewood Cliffs, N J,

1992.

L88 R. N. Lea. Automated space vehicle control for rendezvous proximity operations. Tele-

mechanics and Informatics, 1988, Vol. 5, pp. 179-185.

L J90 R. N. Lea, Y. K. Jani and H. Berenji. Fuzzy logic controller with reinforcement learning

.for proximity operations and docking. Proceedings of the 5th IEEE International

Symposium on Intelligent Control, 1990, Vol. 2_ pp. 903-906.



L89

L90

$76

$88

$85

R. N. Lea, M. Togai, J. Teichrow and Y. Jani. Fuzzy logic approach to combined

translational and rotational control o] a spacecraft in proximity of the Space Station.

Proceedings of the 3rd International Fuzzy Systems Association Congress, 1989, pp.

23-29.

C. C. Lee. Fuzzy logic in control systems: fuzzy logic controller. IEEE Transactions

on Systems, Man and Cybernetics, 1990, Vol. 20, No. 2, pp. 404-435.

E. H. Shortliffe. Computer-based medical consultation: MYCIN, Elsevier, New York,

1976.

P. Smets et al. Nonstandard logics for automated reasoning, Academic Press, London,

1988.

M. Sugeno (editor). Industrial applications of fuzzy control, North Holland, Amster-

dam, 1985.

4



2. MAIN OBJECTIVES OF THIS RESEARCH PROJECT

The eventual goal of this researchis to develop methods for choosing the appropriate

representation of uncertainty (either from one of the already existing formalisms or by

developing a new one).

In order to achieve this goal, it is necessary to accomplish the following:

• To give a survey of the existing uncertainty reasoning techniques.

• To describe characteristics of different uncertainty reasoning techniques that are max-

imally relevant to our engineering problems.

• To describe algorithms that estimate the values of the chosen characteristics for dif-

ferent uncertainty reasoning techniques.

• To formulate the problem of finding the best technique as a mathematical problem,
and

• To solve this optimization problem, i.e., to find uncertainty reasoning technique_ that

are optimal with respect to different optimality criteria.



3. MAIN RESULTS

The main results of this research project are published in the conference proceedings

paper [26], and in other papers published under this grant. With R. Lea from Johnson

Space Center, we are currently working on a book that would incorporate all these results.

These results include the following:

A survey of different uncertainty reasoning techniques is given in [26]. In this

survey, we not only give the list of all possible techniques, but give a theoretical explanation

of why exactly these techniques turned out to be workable.

Characteristics of uncertainty reasoning techniques. For every technique, we

must:

1) first, elicit the knowledge from the experts,

2) then, process this knowledge using the corresponding techniques,

3) and finally, apply the resulting control to a spacecraft.

For each stage, we can choose a natural criterion that makes this particular stage most

successful:

1) The time and effort needed to solicit the knowledge from an expert, can be described

by the average number of binary ("yes-no") questions that we need to ask an expert.

This number, in its turn, is related to the accuracy with which we need to know the

experts' degrees of belief: if the resulting control is sensitive to this accuracy, then

we must determine the degree of belief with better precision, and thus, ask more

questions.

2) The time spent on the processing stage is computation time of an algorithm.

3) The quality of the resulting control can be characterized by the criteria that are

traditionally used in control theory: stability and smoothness.

So, we have five main criteria for choosing uncertainty reasoning techniques:

• entropy, i.e., the average number of binary questions required to complete the knowl-

edge;

• robustness, i.e., sensitivity of the resulting control relative to the inaccuracies in the

initial degrees of belief;

• computational complexity, i.e., the time required for the programs to run;

• stability of the resulting control strategies;

• smoothness of the resulting trajectories.

With the exception of computational complexity (that is a well-defined notion), for

all other criteria we could not use the existing criteria, and therefore, had to provide

appropriate mathematical definitions. For example, in traditional control theory, stability

is usually understood as the following condition: after a small fluctuation, when time

t ---+ (x_, the trajectory eventually returns to its original position. However, if this time t

exceeds the time of the space mission, then this theoretical "stability" is of no use. So,



instead of using the existing theoretical criteria, we give a new definition that formalized
the engineeringpractice rather than the existing theory.

In particular, asa source of the notion of stability, we considered spacecraft orientation

problems, and as a source of smoothness, spacecraft docking problems (see [26] for details).

For entropy, these new definitions are given in [2], [17], [33]; for robustness, in [31],

[32],[TR3],[A14];for ,tability and smoothness, in [21], [26].

In real-life situations, we must use a combined criterion to find a reasonable trade-off

between all five main criteria.

Algorithms that estimate the values of these characteristics:

For entropy, such algorithms are presented in [2], [6], [17], [33]. In particular, [2] and

[17] cover the Dempster-Shafer and probabilistic approaches, and [6] covers the special

case of non-transitive preferences.

• For robustness, methods are presented in [31] and [32].

Computational complexity is not a very serious problem for non-probabilistic methods,

because we can always choose a technique that is reasonably efficient. For probabiIistic

methods, however, the situation is radically different: here, the formulas are given, and

we cannot change them at will. Traditional algorithms of Dempster-Shafer approach

require too long computations, and this is one of the main reasons why these methods

are not universally used. In [1], [11], [A10], we describe an alternative computational

algorithm that enables us to use polynomial-time (i.e., feasible) algorithms.

For stability and smoothness, methods are given in [21] and [26].

Formulation of the problem of finding the best technqiue as a mathematical

problem. As we have already mentioned, in real-life situations, it is reasonable to use

not only the five main criteria, but their combinations as well. What exactly combination

to use depends on a specific problem. To describe a general case, we developed a general

optimization formalism [19], [25], [26] (see also [20], [22], [23], [24]).

This formalism is based on the so-called group-theoretic (symmetry) approach that

has been so successful in modern theoretical physics.

The main idea of applying this approach to non-probabilistic uncertainty is as follows.

In probabilistic case, the value t(A) that is assigned as a truth value to a statement A has

a very precise meaning, e.g., it describes the ratio of cases in which an expert considers

A to be true. In non-probabilistic case, an expert describes his uncertainty in terms of

words of natural languages ("probably", "maybe", etc), and how to represent these words

by numbers is not really that important.

Therefore, if we use a reasonable criterion for choosing a technique, it is natural to

expect that the relative quality of different techniques (with respect to this criterion) should

not depend on what exactly mapping from words to numbers we use.
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In other words, we havehere a family of natural transformations (that transform un-
certainty valuesobtained by using onemapping into valuesobtained by another mapping),
and the ordering between the techniques that correspondsto optimality criteria must be
invariant w.r.t, these transformations.

Optimal choice of techniques. Group-theoretic approach not only allows us to

formulate the family of reasonable criteria, but also to find the techniques that are optimal

with respect to these criteria.

As a criterion, we can take many different combinations of main criteria. Since there

are infinitely many possible combinations, it is impossible to describe a technique that is

optimal for each of these combinations.

So, in this project, we do the following:

• for the main criteria, we solve the optimization problem precisely, and find techniques

that are optimal with respect to these criteria;

for combined criteria, we describe a family of techniques that are optimal under dif-

ferent combination criteria; then, when a criteria is given, to find a technique that is

optimal with respect to this criteria, it is sufficient to test only techniques from this

family.

The description of all techniques that can be optimal under reasonable optimality

criteria is given in [26].

This family includes all the techniques that have been empirically shown to be good,

and also other techniques that are worth trying.

For main criteria, the optimal techniques are described in the following papers:

• for entropy, in [33]; in particular, we get rain(a, b) for "and", and min(a + b, 1) for

_'or" ;

for robustness, in [31] and [321; in particular, we get min(a,b) for "and", max(a,b)

for "or", piece-wise linear membership functions #(x), and standard (center-of-mass)

defuzzification;

• for computational complexity, min and max are evidently the simplest;

• for stability, in [26]; in particular, we get min(a, b) for "and", and min(a + b, 1) for

"or" ;

• for smoothness, in [26]; in particular, we get ab for "and", and max(a, b) for "or".



4. ADDITIONAL RESULTS

In this research,we also applied group-theoretic and similar techniquesto solveaddi-
tional related problems.

Is expert knowledge really necessary? Many researchers, especially in traditional

control community, still doubt that expert knowledge is necessary. Why not make more

experiments and determine the properties of the system?

This is rather a fundamental and theoretical question than a practical one. However,

we thought that it would be nice to have an answer to this challenge.

To provide such an answer, we analyzed the most general physical systems.

One argument in favor of expert knowledge is that for some physical systems, there

is simply no way to find their description based on the experimental data only. In

particular, such an argument was provided for background microwave radiation: sup-

posedly, there is no way to provably confirm whether it is of cosmological origin or

not. We analyzed this example in [9], and proved that this in principle, if we have

sufficiently accurate experimental data, it will be possible to distinguish between the

cosmological and other models of a 3K radiation. (Another example of cognizability

of the physical world is given in [10].)

However, from the viewpoint of computation time that is necessary to make predictions

based on the experimental data, we showed that in the general case, this computation

time grows exponentially with the size of data, and therefore, this problem is not

feasible [8], [28]. This means that to be able to design feasible algorithms we do need

expert knowledge in addition to experimental data.

Another case when expert knowledge is extremely helpful is the case of the so-called

inverse problems. This is a generic mathematical term for the problems in which we

reconstruct the parameters of the system from the noisy measurement data. Usually,

such problems are ill-posed, i.e., small errors in the measured data can lead to large

errors in the parameters. In [27] and [16], we prove that with the expert knowledge

added, such problems not only become well-posed, but also that we can apply rea-

sonably fast algorithms to solve them. Unlike the above two fundamental theoretical

results, this is also a practical result.

If several different techniques are already used to represent the expert

knowledge_ what is the best way to combine them? Our main result was aimed

at the case when we start "from scratch", i.e., when we first choose the uncertainty rep-

resentation technique, and then apply this technique to elicit knowledge from the experts

and process it. In many cases, however, when we start the problem, we already have some

expert knowledge, and this knowledge is already represented by using non-optimal tech-

nique. So, in order to apply the better technique, we must first translate this knowledge

from one representation into another.
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For non-probabiIistic uncertainty reasoning techniques, in [20], we applied the group-

theoretic approach to describe the best "interface" translation algorithms. For translation

between probabilistic and non-probabilistic methods, a translation is proposed in [30].

How to combine intelligent control with more traditional control tech-

niques. Traditional control is best developed for linear systems. So, if we have a non-

linear system, it is reasonable to apply some non-linear re-scaling of its variables so that

after this re-scaling the system will be either linear, or closer to being linear.

Since this re-scaling works for traditional control, it sounds reasonable to apply it

also to the case of intelligent control, i.e., control based on the expert knowledge. This

idea was used in [34], [A16], and shown to be reasonably efficient. Moreover, we apply

group-theoretic methodology to find the optimal re-scaling.

How to make expert systems smarter? In the majority of applications of an

expert system to control, we just translate the expert's knowledge into an actual control

strategy. The resulting control is sometimes worse than the control by a human operator,

because an operator can not only apply his rules, but he can also combine them into more

complicated ones (i.e., in other words, he can make logical conclusions.

In [18], [A3], [All], we show how this can done automatically in a general case. The

idea developed in these papers comes from the analysis of chemical systems [A7].

For important problems of pattern recognition and cluster analysis, such algorithms

are presented in [TR1] and [TR2].

How to make an expert system learn? In the above formulation, we analyzed

the problem of how to translate the expert knowledge into the actual control strategy.

The resulting control strategy is not perfect: first, the expert was not perfect; second,

the translation might not grasp some nuances of his knowledge. So, it is desirable to make

the resulting automated system learn. How?

Several techniques are known that make intelligent systems learn, among them analyt-

ical techniques (i.e., crudely speaking, numerical computations methods), neural networks,

genetic algorithms, etc. All these techniques have been successfully applied to tune intel-

ligent control systems.

But here, we encounter the same problem of choice: there are several different neural

network techniques, and in some cases, some of them work fine, and some fail to improve

the quality of the system. How to choose ?

To solve this problem, we applied a similar group-theoretic methodology, and arrived

at the following results:

• for the simplest case when we are changing the degree of belief of a single statement,

the optimal technique is presented in [23];

• for neural networks, the optimal techniques are presented in [22]; namely, in [22], we

describe the optimal choice of a non-linear basic element (neuron);

10



• for genetic algorithms, the optimal techniques are presented in [24]; namely, we de-

scribe the optimal choice of re-scaling.

Two additional results about learning are presented in [29], [7], [as], and [A13]:

• in [29], we describe how to combine different learning techniques (namely, neural and

analytical);

in [71 (see also [A8]), we show that neural networks are (in principle) capable to learn

anything (if we use an appropriate learning algorithm). In [7], we prove that such

a learning procedure is possible, but provide no example. Such an example is given

in [A13] (warning: this algorithm is not practically efficient; the main reason for

providing it was to prove that in principle, such an algorithm is possible).

Taking into consideration the uncertainty of the expert knowledge and of

the measurement results. As a result of applying uncertainty reasoning techniques,

we design a system that transforms the measurement results into the actual control. The

resulting values of control are not precise for two reasons:

• first, experts are not absolutely confident in the rules that they use;

• measurement results are not absolutely precise, because every real measuring device

is not perfect.

It is therefore important to take both uncertainties into consideration when designing

an intelligent control system. This is partially done.

In particular, when we analyzed sensitivity [31], [A14], we actually considered sensi-

tivity with respect to both types of uncertainty.

For other criteria, wehave just started suchanalysis(see [5],[12-15],[A1-A2],[A4],
[Ag],[A12],[A17]).

By-product of this research: group-theoretical approach leads to new al-

gorithms and results. The same ideas of optimization under uncertainty have also been

successfully applied to other problems:

In [3], we describe an algorithm for computer graphics that is better than the existing

ones. This algorithm solves the problem that is very important for space applications,

with its 3D areas: the problem of rotating an image around an arbitrary axis.

In [4], we describe an algorithm for image processing from radar measurements. Here,

group-theoretic approach is used to justify the choice of an entropy-like function that

we optimize to get the best quality of a reconstructed image.

• Other results (not yet published) are contained in the theses defended under this

grant.
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